Что характеризует значение орбитального квантового числа


Значения орбитального квантового числа: 0 1 2 3 4

Подуровень: s p d f g

При n = 1, l = 0, при n = 2, l = 0, 1, при n = 3, l = 0, 1, 2 и так далее. Таким образом,первый уровень имеет один подуровень: s- подуровень; второй – два: s- и р-подуровни; третий – три: s-, p-. d- подуровни и так далее. Отсюда ясно, чтономер уровня указывает на число подуровней, которыми он располагает. Последовательность подуровней на каждом уровне такова: s-, p-, d-подуровни и так далее.

Энергетический подуровень – это совокупность электронных состояний, характеризующихся определенным набором квантовых чисел n и l .

Состояние электрона характеризуется определенными значениями главного и орбитального квантовых чисел. Например: запись 3р говорит о том, что электрон находится на третьем энергетическом уровне на р-подуровне.

Если l = 0, то область пространства (электронное облако), где вероятность нахождения электрона будет наивысшей, представляет собой сферу (s-облако). Если l = 1, то область наиболее вероятного нахождения электрона представляет собой объемную вытянутую восьмерку (р-облако); при l = 2 такая область пространства представляет собой объемный четырехлистник (d-облако).

Третьим квантовым числом является магнитное квантовое число m . оно характеризует число способов взаимной ориентации электронных облаков (орбиталей) в пространстве. Магнитное квантовое число зависит от значений орбитального квантового числа: m = -l … 0 …+l. Следовательно, для каждого l магнитное число m принимает (2l + 1) значений (каждому значению l соответствует ряд значений магнитного квантового числа, которые меняются от –l до +l, включая 0). Число значений магнитного квантового числа показывает число ориентаций электронного облака в пространстве, которые равны числу орбиталей на данном подуровне.

Если l = 0 (s), то m = 0, магнитное квантовое число имеет одно значение при данном значении орбитального квантового числа, следовательно, на s-подуровне имеется только одна орбиталь. При l = 1 (p), m = -1, 0, 1. Таким образом, р-подуровень состоит из трех орбиталей. Аналогичные рассуждения можно провести и для других значений орбитального квантового числа. Все орбитали, принадлежащие одному подуровню, имеют одинаковую энергию и называются вырожденными.

Общее число орбиталей, из которых состоит любой энергетический уровень (квантовый слой), равно n 2. а число орбиталей, составляющих подуровень, равно (2l + 1).

Теперь мы можем дать следующее определение орбитали:

Состояние электрона в атоме, характеризующееся определенными значениями квантовых чисел n, l и m, т.е. определенными размерами, формой и ориентацией в пространстве электронного облака, называется атомной электронной орбиталью

Четвертым квантовым числом является спиновое квантовое число (s), которое характеризует собственный механический момент электрона, связанный с вращением электрона вокруг собственной оси при его движении вокруг ядра. Это число может иметь только два значения либо +1/2, либо –1/2 (электрон может вращаться либо по часовой стрелке, либо против часовой стрелки).

ПОРЯДОК ЗАПОЛНЕНИЯ ЭЛЕКТРОНАМИ УРОВНЕЙ, ПОДУРОВНЕЙ И ОРБИТАЛЕЙ АТОМА

Структура атома с распределенными по уровням, подуровням и орбиталям электронами называется электронной конфигурацией атома.

Электронную конфигурацию записывают с помощью электронной формулы. Например: запись 1s 1 означает, что электрон находится на первом энергетическом уровне (1 это значение главного квантового числа), на s-подуровне (буквой s ''кодируют'' значение орбитального квантового числа равное 0 (l = 0), а цифра 1 над буквой s показывает число электронов. Это электронная формула атома водорода. Каков же порядок заселения уровней, подуровней и орбиталей атома многоэлектронного? Распределение электронов в атоме, который находится в основном состоянии, определяется зарядом ядра атома. Электроны заселяют уровни, подуровни и орбитали атома в соответствии со следующими принципами.

1. Принцип минимальной энергии.

Основному (или устойчивому) состоянию атома соответствует минимальная суммарная энергия электронов.

Если атому сообщать энергию, то он переходит в возбужденное состояние. В возбужденном состоянии атом неустойчив, в нем он существует примерно 10 -8 сек, а затем переходит в основное состояние, излучая при этом квант энергии. Энергия уровней и подуровней увеличивается в соответствии со схемой:

В невозбужденном состоянии атома каждый новый электрон попадает на тот уровень и на тот подуровень, где его энергия будет минимальной.

2. Принцип Паули.

В атоме не может быть электронов, характеризующихся четырьмя одинаковыми квантовыми числами.

Из принципа Паули вытекает важное следствие, которое определяет максимальное число электронов в одной орбитали. Каждая орбиталь может вместить только два электрона, имеющих противоположно направленные спины. Два таких электрона, располагающиеся на одной орбитали образуют электронную пару. Покажем это на примере заселения электронами 1s-орбитали:

Квантовые числа n l m s

Первый электрон 1 0 0 + ½

Второй электрон 1 0 0 - ½

Теперь мы можем указать максимальное число электронов на подуровнях: s 2. p 6. d 10. f 14. Максимальное число электронов на каждом подуровне можно вычислить по формуле: 2(2l + 1).

3. Третий принцип – правило Хунда.

При заполнении электронами вырожденных орбиталей каждого данного подуровня число неспаренных электронов на нем должно быть максимальным.

Практически это означает, что, например, у атома азота на р-подуровне находится три электрона и все они должны занимать свою орбиталь (спаренных электронов у атома азота на р-подуровне быть не должно). Только у атома кислорода, когда уже все три орбитали заселены электронами, четвертый электрон занимает свое место уже в занятой другим электроном орбитали.

Если два электрона занимают две разные орбитали, то взаимодействие между ними будет меньше, меньше будет и общий запас энергии системы. Электрон, который один находится в орбитали, называется неспаренным электроном. Такие электроны согласно спиновой теории валентности определяют валентность элемента.

ЭЛЕКТРОННЫЕ ФОРМУЛЫ ЭЛЕМЕНТОВ I – IV ПЕРИОДОВ ПЕРИОДИЧЕСКОЙСИСТЕМЫ ЭЛЕМЕНТОВ

У элементов первого периода один электронный уровень, имеющий один подуровень. У водорода один электрон, а у гелия – два. Они заполнили первый электронный уровень – гелием закончился первый период.

Элементы второго периода имеют уже два электронных уровня, первый полностью заполнен, а второй подлежит заполнению. Второй уровень имеет два подуровня: s- и р-подуровни. Они заполняются электронами в соответствии с вышеуказанными принципами.

3 Li 1s 2 2s 1 7 N 1s 2 2s 2 2p 3

4 Be 1s 2 2s 2 8 O 1s 2 2s 2 2p 4

5 B 1s 2 2s 2 2p 1 9 F 1s 2 2s 2 2p 5

6 C 1s 2 2s 2 2p 2 10 Ne 1s 2 2s 2 2p 6

У неона произошло заполнение электронами второго энергетического уровня, на неоне заканчивается второй период.

На втором энергетическом уровне 8 электронов и, соответственно, 8 элементов. Оболочку с конфигурацией 1s 2 обозначают буквой К, оболочку с конфигурацией 2s 2 2p 6 - L.

Элементы третьего периода имеют три электронных уровня, внешним является третий. Он имеет три подуровня, которые располагают 9 орбиталями. Следовательно, максимальное число электронов на этом уровне равно 18 (2 электрона на s-подуровне, 6 на р-подуровне и 10 на d-подуровне). Однако согласно энергетической диаграмме электроны заполняют первые два подуровня третьего уровня. Следующие два электрона заселяют 4s-подуровень, так как его энергия меньше, чем энергия 3d-подуровня.

Аргоном заканчивается третий период.

Это первый большой период. Начинается он калием и кальцием, у них электроны заполняют 4s-подуровень (он энергетически более выгоден).

19 K 3s 2 3p 6 4s 1

20 Ca 3s 2 3p 6 4s 2

Далее электроны заселяют 3d-подуровень, следующий по запасу энергии. Здесь мы сталкиваемся с некоторыми особенностями. От 21 Sc до 23 V электроны у каждого следующего элемента поступают по одному на 3d-подуровень.

21 Sc 1s 2 2s 2 2p 6 3s 2 3p 6 3d 1 4s 2

Подуровень 3d записывают перед 4s, так как квантовое число 4 больше квантового числа 3.

22 Ti 1s 2 2s 2 2p 6 3s 2 3p 6 3d 2 4s 2

23 V 1s2s 2 2p 6 3s 2 3p 6 3d 3 4s 2

У хрома происходит следующее: очередной электрон появляется на 3d-подуровне и на этот же подуровень переходит электрон с подуровня 4s. Объясняется это тем, что, как показано физиками-теоретиками, наиболее устойчивыми являются подуровни заполненные наполовину электронами или полностью. Это явление называют ''провалом'' электрона (электрон с подуровня 4s проваливается на подуровень 3d), оказалось конфигурация d 5 и d 10 более устойчивы, чем конфигурации d 4 и d 9. Поэтому очередной ''провал'' электрона будет еще и у меди.

24 Cr 1s 2 2s 2 2p 6 3s 2 3p 6 3d 5 4s 1

25 Mn 1s 2 2s 2 2p 6 3s 2 3p 6 3d 5 4s 2

26 Fe 1s 2 2s 2 2p 6 3s 2 3p 6 3d 6 4s 2

27 Co 1s 2 2s 2 2p 6 3s 2 3p 6 3d 7 4s 2

28 Ni 1s 2 2s 2 2p 6 3s 2 3p 6 3d 8 4s 2

29 Cu 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 1

30 Zn 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2

Далее электроны заполняют 4p-подуровень, на него приходят шесть электронов. Криптоном заканчивается четвертый период, оболочку 3s 2 3p 6 3d 10 обозначают буквой М:

31 Ga 4s 2 4p 1 и так далее до 36 Kr 4s 2 4p 6 .

Анализируя электронные конфигурации различных элементов, мы можем отметить, что конфигурации внешних электронных уровней периодически повторяются. Так, литий, натрий, калий, рубидий, цезий и франций имееют один электрон на внешнем электронном уровне; бериллий, магний, кальций, стронций, барий и радий – два электрона и так далее. Элементы с аналогичной электронной конфигурацией называют электронными аналогами. Эти элементы имеют сходные химические свойства, но различную химическую активность.

В зависимости от того, какой подуровень данного энергетического уровня заполняют электроны последним, элементы можно разделить на следующие семейства:

1. s-элементы . у этих элементов последним заполняется s-подуровень внешнего энергетического уровня;

2. р-Элементы . у них электроны заполняют р-подуровень внешнего энергетического уровня;

3. d-Элементы, у них электроны заполняют d-подуровень предпоследнего <(n – 1)d-подуровня> энергетического уровня;

4. f-Элементы, у них электроны заполняют f-подуровень третьего снаружи уровня <(n – 2)f-подуровень>.



студопедия, школопедия, лекция, реферат, пособие, бесплатно, методичка:Значения орбитального квантового числа: 0 1 2 3 4 Подуровень: s p d f g При n = 1, l = 0, при n = 2, l = 0, 1, при n = 3, l = 0, 1, 2 и так далее. Таким образом,первый уровень имеет один

что характеризует значение орбитального квантового числа